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Abstract  -- The Discrete Wavelet Transform (DWT) decomposes an image

into bands that vary in spatial frequency and orientation. It is widely used for

image compression. Measures of the visibility of DWT quantization errors are

required to achieve optimal compression. Uniform quantization of a single

band of coefficients results in an artifact that we call D W T  un i fo rm

quantization noise; it is the sum of a lattice of random amplitude basis

functions of the corresponding DWT synthesis filter. We measured visual

detection thresholds for samples of DWT uniform quantization noise in Y, Cb,

and Cr color channels.

The spatial frequency of a wavelet is r 2-λ  , where r  is display visual

resolution in pixels/degree, and λ  is the wavelet level. Thresholds increase

rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to

Cb, and with orientation from low-pass to horizontal/vertical to diagonal.

We construct a mathematical model for DWT noise detection thresholds

that is a function of level, orientation, and display visual resolution. This

allows calculation of a "perceptually lossless" quantization matrix for which all

errors are in theory below the visual threshold. The model may also be used as

the basis for adaptive quantization schemes.
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I . INTRODUCTION

Wavelets form a large class of signal and image transforms, generally

characterized by decomposition into a set of self-similar signals that vary in

scale and (in 2D) orientation [1]. The Discrete Wavelet Transform (DWT) is a

particular member of this family which operates on discrete sequences, and

which has proven to be an effective tool in image compression [2-7]. The DWT

is closely related to and in some cases identical to sub-band codes [8], perfect-

reconstruction filter banks [9], and quadrature mirror filters. In a typical

compression application, an image is subjected to a two-dimensional DWT

whose coefficients are then quantized and entropy coded.

DWT compression is lossy, and depends for its success upon the invisibility

of the artifacts. However, in the published literature there are few data [10]

and no formulae describing the visibility of DWT artifacts. The purpose of this

paper is to provide this information, and to show in a preliminary way how it

may be used in the design of wavelet compression systems. In this research we

have generally followed earlier work on the Discrete Cosine Transform [11-19],

with some important differences that will be discussed below.

I I . BACKGROUND

A . Discrete Wavelet Transform

Fig. 1 illustrates the elements of a one-dimensional, two-channel perfect-

reconstruction filter bank. The input discrete sequence x  is convolved with

high-pass and low-pass analysis filters aH  and aL, and each result is down-

sampled by two, yielding the transformed signals xH  and xL . The signal is

reconstructed through up-sampling and convolution with high and low

synthesis filters sH   and sL  . For properly designed filters, the signal x  is

reconstructed exactly (y=x) .
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Figure 1. A two-channel perfect-reconstruction filter bank.

A DWT is obtained by further decomposing the low-pass signal xL  by means

of a second identical pair of analysis filters, and, upon reconstruction,

synthesis filters, as shown in Fig. 2. This process may be repeated, and the

number of such stages defines the level  of the transform.
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Figure 2. Two-level 1D Discrete Wavelet Transform.

With two-dimensional signals such as images, the DWT is typically applied

in a separable fashion to each dimension. This may also be represented as a

four-channel perfect reconstruction filter bank, as shown in Fig. 3. Now each

filter is two-dimensional, with the subscript indicating the separable horizontal

and vertical components, and the downsampling operation is applied in both

dimensions. The resulting four transform components consist of all possible

combinations of high and low-pass filtering in the two dimensions. As in the

one-dimensional case, the process may be repeated a number of times, in each

case by applying the component x L L  as input to a second stage of identical

filters.
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Figure 3. Four-channel, 2D Perfect Reconstruction Filter Bank.

B. Levels, Orientations, & Bands

Here we adopt the term level   (λ ) to describe the number of 2D filter stages a

component has passed through, and we use the term orientat ion  (θ) to identify

the four possible combinations of low-pass and high-pass filtering the signal

has experienced. We index orientations as follows: {1,2,3,4} = {LL,HL,HH,LH} where

low and high are in the order horizontal-vertical. Each combination of level

and orientation {λ ,θ} specifies a single band . This terminology is illustrated in

Fig. 4.

{1,3}

{1,2}

{1,4}

{2,4} {2,3}

{2,2}
{3,4} {3,3}

{3,2}{3,1}

Figure 4. Indexing of DWT bands. Each band is identified by a level and an

orientation {λ ,θ}. This example shows a three level transform.
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C. Linear-Phase 9/7 Wavelets

For the purpose of this research it is necessary to choose a particular DWT,

that is, a particular pair of filters a L  and a H . We selected the linear-phase 9/7

biorthogonal filters [20]. They were chosen because 1) they are symmetrical

(linear-phase), 2) they are in wide use [3], 3) they have been argued to have

certain mathematical properties attractive for image compression [5] and 4)

they have been adopted as part of the FBI standard for compression of

fingerprint images [2]. Since we shall be dealing primarily with synthesis filters,

we give the synthesis coefficients in Table 1 and show them graphically in Fig.

5. For a perfect reconstruction filter bank, the synthesis filters may be derived

directly from  the analysis filters.

index 0 1 2 3 4

sL 0.788486 0.418092 -0.0406894 -0.0645389

sH -0.852699 0.377403 0.110624 -0.0238495 -0.0378285

Table 1. Coefficients of linear-phase 9/7 synthesis filters sL and sH  (origin is at

index 0, coefficients for negative indices follow by symmetry).
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Figure 5. Linear-phase 9/7 synthesis filters.

D. DWT Quantization Matrix

Compression of the DWT is achieved by quantization and entropy coding of

the DWT coefficients. Typically a uniform quantizer is used, implemented by

division by a factor Q  and rounding to the nearest integer. The factor Q  may

differ for different bands. It will be convenient to speak of a quant izat ion
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matr ix  to refer to a set of quantization factors corresponding to a particular

matrix of levels and orientations.

Quantization of a single DWT coefficient in band {λ ,θ} will generate an

artifact in the reconstructed image that is proportional to the impulse

response of the corresponding synthesis filter cascade. Examples of impulse

responses for two levels and four orientations are shown in Fig. 6. Although

they are rendered as images with equal size to emphasize self-similarity, the

images in the upper row (level 2) in fact are twice as large (in pixels) in each

d imens ion .

Figure 6. Linear-phase 9/7 wavelet basis functions at two levels. The images for

level 1 are 16 x 16 pixels, those for level 2 are 32 x 32 pixels.

A particular quantization factor Q  in one band will result in coefficient

errors in that band that are approximately uniformly distributed over the

interval [-Q/2,Q/2]. The error image will be the sum of a lattice of basis functions

with amplitudes proportional to the corresponding coefficient errors. Thus to

predict the visibility of the error due to a particular Q , we must measure the

visibility thresholds for individual basis functions and error ensembles.

E. Display Visual Resolution

Visibility of DWT basis functions will depend upon display visual resolution

in pixels/degree. Given a viewing distance v  in cm and a display resolution d  i n

Level 2

Level 1

 
Orientation 1 2 3 4
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pixels/cm, the effective display visual resolution (DVR) r  in pixels/degree of

visual angle is

r d v d v d v= ( ) ≈ ≈tan / .π π180 180 57 3 (1)

A useful mnemonic is that  visual resolution is the viewing distance in pixe ls

(dv ) divided by 57.3. Table 2 provides some illustrative examples.

Resolution Distance DVR
Display (pixels / inch) ( inches) (pixels/degree)

Computer Display 7 2 1 2 15 .1
Low quality printing 3 0 0 1 2 62 .8

High quality printing 1200 1 2 251.4
HDTV 4 8 7 2 60 .3

Table 2. Examples of visual resolution for various displays. The HDTV example

asumes 1152 active lines at a viewing distance of 3 picture heights.

F. Wavelet Level, Display Resolution, and Spatial Frequency

We have indexed DWT basis functions by a level λ  and an orientation θ. By

their nature, wavelet bases of one orientation at different levels are essentially

scaled versions of one another (Fig. 6). In terms of the signal that reaches the

eye, the magnification of the basis function that results from a move down one

level in the transform is equivalent to a decrease by a factor of two in display

resolution. A metric that incorporates this equivalence, and that clearly

expresses the visual resolution of a given basis function, is spatial frequency

expressed in cycles/degree.

A single basis function encompasses a band of spatial frequencies, and at

this point it is only necessary that we identify this band in some consistent

fashion. The DWT operates essentially by bisecting a frequency band at each

level. At the first level of the transform, the selected band extends from the

Nyquist frequency, which will be half the display resolution, to half the

Nyquist. At the next level, the band will be lower by a factor of two, and so on.

Therefore we will take the Nyquist frequency of the display resolution as the
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nominal spatial frequency of the first DWT level, and the frequency of each

subsequent level will be reduced by a factor of two. Thus for a display

resolution of r pixels/degree, the spatial frequency f of level λ  will be

f r= −2 Λ cycles/degree (2)

G. Gamma Correction

Digital grayscale images typically contain values that represent so-called

gamma-corrected luminance Y' [21]. This is a power function of luminance,

with an exponent of around 1/2.3. Likewise digital color images are typically

represented by gamma-corrected R', G', and B', which are similarly power

functions of corresponding linear primaries. Color transforms in wide use, such

as YCbCr, are linear transforms of these nonlinear quantities.

Image compression algorithms typically operate directly on these corrected

values, rather than on luminance values themselves. This means that in the

particular example of a wavelet transform, the artifact due to quantization of

a particular coefficient will be a wavelet basis function in this non-linear

intensity domain. To allow direct predictions, we therefore conducted our

experiments in the gamma-corrected domain, using 2.3 as the defining

exponent. In our earlier work on the Discrete Cosine Transform, we chose to

estimate visibility of DCT basis functions of luminance, corresponding to a

display gamma of 1, but that required somewhat indirect predictions of

visibility of artifacts in the gamma-corrected domain. Nevertheless for

comparison, we also collected one set of thresholds using a display gamma of

1. This display gamma was arranged through manipulation of color look-up

tables in the computer-display interface [22].

The specific color space we investigate is YCbCr [23, 24]. For simplicity of

notation, in the remainder of this paper we will use the Y, Cb, and Cr to

designate values in this gamma-corrected color space.
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I I I . METHODS

A . Stimuli

Stimuli were modulations of either Y, Cb, or Cr channels of a color image. In

each case the two unmodulated channels were set to a constant value of 0.

These produce images that are black/white, yellow/purple, and red/green

respectively. All modulations were added to an otherwise uniform (YCbCr =

{128,0,0}) image of size 1024 x 1024 pixels.

Modulations were either single DWT basis functions or samples of DWT

uniform quantization noise. In either case, individual modulation images were

scaled to produce amplitudes in the range of [0,126]. When added to the mean

of 128, this yields graylevels ranging from [2-254]. We reserved graylevels 0, 1,

and 255 for fixed elements of the display, such as fixation marks. The peak

amplitude of the modulated signal is our measure of stimulus intensity. The

modulated channel, plus the two remaining unmodulated channels, were then

transformed to R'G'B' using the rule

′
′
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Grayscale stimuli were presented on an Apple 12" Monochrome Display

(Family # M1050, manufactured 3/91) with a resolution of 30.1 pixels/cm, and

were viewed from a distance of 121.9 cm, yielding a display visual resolution of

64 pixels/degree. The mean luminance of the display (Y = 128) was 14 cd/m2.

The measured gamma was 2.3.

Color stimuli were presented on a Taxan 20" color monitor (UV 1095,

manufactured 2/91) with a resolution of 35.26 pixels/cm, viewed from a

distance of 104 cm, for a display visual resolution of 64 pixels/degree. The

mean luminance of the display (R'G'B' = {128,128,128}) was 17.3 cd/m2. The

measured gamma of the monitor was 2.31, and the maximum luminance was
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87.5 cd/m2. The CIE Yxy chromaticities of the three color guns were R={26.8,

0.613 , 0.353}, G= {55.2, 0.281, 0.605}, B= {6.52, 0.143, 0.058}.

To vary the display visual resolution we pixel-replicated the stimuli by

factors of 1 (no replication), 2, or 4 in both dimensions, yielding effective

visual resolutions of 64, 32, and 16 pixels/degree. For all stimuli, the duration

was 16 frames in duration at a frame rate of 60 Hz, or 267 msec. The time

course was a Gaussian exp[-π(1-t/8)2]   where t is in frames.

2) DWT Basis Function Stimuli:  We created images of basis functions by

setting to the value 1 a single coefficient in band {λ ,θ} in an otherwise zero

DWT, and computing the inverse DWT. Image width was the smallest power of

two large enough to accommodate the support of the basis function, which is

equal to 2(λ +3).  An example for band {3,3} is shown in Fig. 7.

A)  B) 

Figure 7. Construction of DWT basis function stimulus. A) A three-level DWT,

with the band levels separated by tick marks and progressing in order from

top to bottom and right to left (see Fig. 4). A single coefficient in band {3 ,3}

is set to 1, the rest is set to 0.  B) Inverse DWT of the transform in A. This is

a basis function for band {3,3}. Image size is 64x64.

2) DWT Uniform Quantization Noise Stimuli:  Samples of DWT uniform

quantization noise were produced by filling one band of an otherwise zero DWT

with samples drawn uniformly from an interval [-1,1], and inverse transforming

the result. The image size was selected for each level in such a way that the

size of the filled band was always 8x8. For level λ , this means that image width

was 2(λ +3). An example is shown in Fig. 8.
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A)  B) 

Figure 8. Construction of a DWT noise image. A) Two-level DWT with band {2,4}

filled with noise. B) Inverse DWT of the transform in A. Image size is 32x32.

B. Threshold Measurement

In the grayscale experiments, stimulus amplitude was controlled by means

of look-up tables [22, 25]. This allowed display of signals with amplitudes less

than one. For color experiments (Cb and Cr) stimuli of various amplitudes

were computed in advance as digital movies, and thus limited to integer

a m p l i t u d e s .

To measure detection thresholds for individual stimuli we used a two-

alternative forced-choice (2AFC) procedure. Each trial consisted of two 267

msec time intervals, one containing a uniform gray screen with luminance Ym ,

and one containing the stimulus added to the uniform gray screen. A pause of

534 msec separated the two intervals, which were marked by audible warning

tones. Following the presentation, the observer selected the interval that

appeared to contain the stimulus. From trial to trial, the amplitude of the

stimulus was varied adaptively using a Quest staircase [26]. Following 32 trials,

a Weibull function was fit to the proportion correct expressed as a function of

log amplitude and threshold was estimated as the amplitude yielding 82%

correct [27].

A small gray cross (3 x 3 pixels, Y = 96) at the center of the screen served as

a fixation point and aid to accommodation. The cross was extinguished during

each stimulus presentation, but remained on between the two intervals of the

trial and between trials.
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Three observers took part in the experiments. Observer gyy was a 23 year

old female, sfl was a 21 year old male, and abw was a 43 year old male.

Observers gyy and abw were corrected myopes, sfl was emmetropic. Viewing was

binocular with natural pupils in an otherwise darkened room.

I V . RESULTS

We begin our discussion of results with an examination of grayscale data for

two observers (gyy and sfl) for two different stimuli (basis functions and noise

patterns) at two different display gammas (1 and 2.3). This will reveal some

basic patterns in the data, as well as differences due to stimulus type and

display gamma. We then demonstrate from a subset of the data that DWT

level has little effect upon visual thresholds, once the effect of spatial

frequency has been factored out. We next compare basis function and noise

thresholds, and show how one may be predicted systematically from the other.

Following these analyses, we will consider only thresholds for noise patterns

collected with a display gamma of 2.3. The grayscale data are fit with a

mathematical model, and thresholds for color wavelets are presented and fit

by the same model.

A . Grayscale Results

Figure 9 shows grayscale thresholds for various DWT signals and observers as

a function of spatial frequency and orientation. In these and all subsequent

figures, thresholds are expressed as the peak amplitude of the signal, in units of

digital levels, with an implicit range of 2-254 between darkest and brightest

levels. Because the signals are superimposed on a background of 128, the

largest possible amplitude is 126. The first panel shows luminance amplitude

thresholds, obtained with a display gamma of 1, for single basis functions.

They show a rapid ascent at higher frequencies, and also show an effect of

orientation: highest thresholds are for orientation 3 (obliques), lowest are for

orientation 1 (low-pass), and intermediate thresholds are obtained for

orientations 2 and 4 (horizontal and vertical). The second panel shows
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comparable data for a display gamma of 2.3. Thresholds are generally lower,

but the pattern of results is similar. The third and fourth panels show

thresholds for two observers for noise images at a display gamma of 2.3. The

pattern is again similar, with a further general reduction in thresholds. For the

reasons outlined in the introduction, we have focused upon the case of display

gamma = 2.3. Accordingly all subsequent analyses and discussions refer only to

this case.

B. Effect of DWT Level

To verify that DWT level or display visual resolution per se have little effect

upon visual thresholds when spatial frequency f is held constant, we have

collected thresholds for noise images at three display resolutions. Display

resolution was varied by pixel replication of 1, 2 or 4 in each dimension from a

basic value of 64 pixels/degree, yielding effective visual resolutions of 64, 32,

and 16 pixels/degree. Due to nonlinearities between horizontally adjacent

pixels in typical monitors[28], we only used an orientation of 4 (vertical

modulation) at 64 pixels/degree.
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Thresholds for display resolutions of 16, 32, and 64 pixels/degree, all at

orientation 4, are shown in Fig. 10. Where multiple measurements have been

made, error bars are shown. Though there is some indication of a small
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Figure 9. Thresholds for DWT signals. Orientations are indicated by the line

within each symbol. Text in each panel indicates observer, stimulus, and

gamma. Error bars of plus and minus one standard deviation are included

where repeated measures were taken.



3:24  PM 15 July  23 , 1996

systematic difference for gyy between 32 and 64 pixels/degree, in general

thresholds are largely unaffected by resolution, once they are expressed as a

function of spatial frequency in cycles/degree.
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Figure 10. Thresholds at display resolutions of 16 (triangles) 32 (squares) and

64 pixels/degree (circles), for orientation 4.

Fig. 11 shows additional data for observer sfl at 16 and 32 pixels/degree.

There is again little evidence of any substantial effect of resolution per se, once

the thresholds are plotted as a function of spatial frequency in cycles/degree.
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Figure 11. Thresholds at display resolutions of 16 (dashed line) and 32

pixels/degree (solid line), for orientations 1, 2, and 3.
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C. Single Basis Functions vs. Noise Images

Fig. 12 plots the difference between log thresholds for single basis functions

and for noise images, taken from the second and third panels of Fig. 9. As

expected, basis function thresholds are uniformly higher than noise thresholds.
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Figure 12. Difference between log thresholds for DWT noise and basis functions.

Open symbols show data for individual orientations, solid symbols are the

means. The heavy line is the prediction from probability summation.

We considered a simple spatial probability summation model to account

quantitatively for the difference between basis function and noise thresholds

[27, 29]. In this context, this model asserts that the Minkowski sum over

individual basis functions amplitudes is equal for all basis functions ensembles

at threshold. In particular, if threshold for a single basis function is Y basis, and

if Y i are the amplitudes of the basis functions that make up the threshold noise

stimulus, then

Y Ybasis i
i

N

= 









=
∑ β

β

1

1/

(4)

For detection of simple contrast stimuli, an exponent β  of about 3-4 is

typically observed. The threshold contrast Y basis is measured directly, but the

set of amplitudes Yi must be derived from the threshold amplitude of the

noise stimulus Y noise. Let A basis be the amplitude of the basis function that
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results from a unit DWT coefficient D=1 . Then in general, Y=AD . A particular set

of random coefficients {D i} will result in a noise waveform with amplitude

A noise. Thus if the noise amplitude at threshold is Y noise , the corresponding

coefficients are {D i} Ynoise /A noise . The individual basis function amplitudes are

t h e n

Y
A

A
Y Di

basis

noise
noise i= (5)

Combining (4) and (5), we find

Y

Y

A

A
Dbasis

noise

basis

noise
i

i

N
=











=
∑ β

β

1

1/

(6)

The ratio A basis  /A noise  is close to 1 for all noise stimuli (almost always

slightly less than 1), which makes sense since the random numbers were drawn

from a uniform distribution over {-1,1}. In log units, it averages -0.0205.

To compute the second term in this prediction we first note that exactly the

same random samples {D i} were used for each noise stimulus. With β=4, this

term equals 0.295 log units, for a combined prediction of 0.2745 log units,

independent of resolution or orientation. This value is plotted as the

horizontal line in Fig. 12. It is clear that probability summation provides an

excellent account of the difference between basis and noise thresholds.

This is a useful observation since it provides a way to predict thresholds for

individual basis functions from uniform noise thresholds. These may then be

used to predict visibility of noise produced by non-uniform quantization [2].

D. Grayscale Model

We have experimented with various models to express the threshold for

grayscale DWT noise as a function of spatial frequency and orientation. Each

model was fit to all the grayscale (Y ) noise data for observers gyy and sfl (a

total of 103 thresholds). Parameters were optimized with respect to the

summed squared error in log Y . One model that provides a reasonable fit is
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log log log log .Y a k f g f= + −( )θ 0

2

(7)

This is a parabola in log Y  vs. log f coordinates, with a minimum at gθf0   a n d

a width of k -2  . The term g θ   shifts the minimum by an amount that is a

function of orientation, and where g2 = g4= 1. The term a  defines the minimum

threshold. The optimized parameters and rms error (of log Y  ) are given in

Table 3. The fit is shown in Fig. 13.

Color Observer r m s a k f0 g1 g3

Y gyy & sfl 0 .134 0.495 0.466 0.401 1.501 0.534

Table 3. Parameters for DWT threshold model for the Y channel.
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Figure 13. Fit of the threshold model to grayscale data of observers gyy and sfl.

E. Color Results

Figure 14 shows results for observers sfl and abw at orientations 1, 3, and 4.

We did not collect data for orientation 2 (horizontal) because the grayscale

data suggest that it largely duplicates the results from orientation 4 (vertical),

and because horizontal modulations are more subject to display limitations.

Data at 2, 4 and 8 cycles/degree were collected with a zoom of 4, at 1.2, zoom =

2, and at 1.5, zoom = 1. For all measurements, stimulus was a DWT noise

pattern, and display gamma=2.3.
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Figure 14. Thresholds for DWT uniform noise in Cr and Cb channels.
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The effects of spatial frequency and orientation are similar to those evident

in the grayscale data. However there is a general elevation of all thresholds, by

about a factor of two for Cr thresholds and about a factor of four for Cb

thresholds. Observer abw is also somewhat less sensitive than observer sfl.

F. Color Model

We have applied the same model used for grayscale thresholds to the color

thresholds in Fig. 14. We have fit the data of each color channel separately.

Also, because they clearly differed in sensitivity, we have fit separately the data

of the two observers. The solid curves in Fig. 14 show the various fits. The

parameters are in Table 4, along with the Y parameters from Table 3.

Color Observer r m s a k f0 g1 g3

Y gyy & sfl 0 .134 0.495 0.466 0.401 1.501 0.534
Cr sfl 0 .113 0.944 0.521 0.404 1.868 0.516

a b w 0.127 0.803 0.539 0.328 2.017 0.589
Cb sfl 0 .145 1.633 0.353 0.209 1.520 0.502

a b w 0.093 2.432 0.520 0.269 1.706 0.599

Table 4. Parameters for DWT YCbCr threshold model.

To illustrate the differences between the model thresholds for the three

color channels we plot them together in Fig. 16. In this figure we have used Cr

and Cb parameters from sfl, who is considerably more sensitive than abw. The

Y  curve is generally about a factor of two below the Cr curve, which is in turn

about a factor of two below the Cb curve, although this difference declines at

higher spatial frequencies, because the Cb curve is somewhat broader than Y or

Cr. This broadening is likely due to the intrusion of a luminance detecting

channel at high frequencies and high contrasts. The Cb wavelets do have a

luminance component because the Cb color axis is not orthogonal to the

human luminance axis.
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Figure 16. Model predictions for Y (bottom curve), Cr (middle), and Cb (top) at

each orientation for observer sfl.

G. Theoretical Account of Model Parameters

Although our interest in the threshold model is primarily a practical one,

we offer the following general explanation of the estimated model parameters

in Table 4. First we note that although the model is a parabola, all data

collected lie to one side of the parabola. This monotonic ascent of thresholds

with spatial frequency is consistent with two factors: one, the decline of

contrast sensitivity with increasing spatial frequency [30], and two, the

decreasing size of our noise stimuli with increasing spatial frequency. For the Y

data, the parabola minimum is at about 0.4 cycles/degree. This is similar to

estimates obtained for Gabor functions of fixed log bandwidth, which also

decline in size with spatial frequency [31].

The effects of orientation, manifest in the parameters g 1  and g 3  , can be

understood as follows. Figure 17 depicts the wavelets and their Fourier spectra

at the four orientations. The parameters g 1  and g 3  describe the thresholds for

orientations 1 and 3 as frequency shifts relative to threshold for orientations 2

and 4. From the nature of dyadic wavelets, orientation 1 has a spectrum which

is approximately a factor of two lower in spatial frequency than orientations 2
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or 4. This would suggest a factor of g1 = 2. However, at orientation 1 the signal

energy is spread over all orientations, which we know to be less visually

efficient than to concentrate them at a narrow range, as in the spectra for

orientations 2 and 4. Thus we expect a slight increase in threshold, which can

be mimicked by a slight reduction in f0 . Thus the final prediction is slightly

less than 2, which is what we obtain.

1 2 3 4

Figure 17. Wavelets and their Fourier spectra at four orientations.

For orientation 3, two similar effects are at work. First, because of the

Cartesian splitting of the spectrum, the spatial frequency is about √2  above

that of orientations 2 and 4, yielding a prediction of g 3  = 2-1/2. But here again

the spectrum is distributed over two orthogonal orientations (45° and 135°),

which should result in a log threshold increase of about 21/4 (a shift of 2 -1/4) or

a total prediction of g3  = 2-3/4 = 0.59, which is indeed just above what is

obtained. A third effect, the well-known oblique effect [32], may contribute the

final small amount of threshold elevation.

V. QUANTIZATION MATRICES

We now use the model developed above to compute quantization matrices

for the linear-phase 9/7 DWT. The basic idea is to construct a "perceptually

lossless" quantization matrix, by using a quantization factor for each level and

orientation that will result in a quantization error that is just at the threshold

of visibility. Although the actual visibility of quantization errors will depend
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upon the combined visibility of errors across the various bands, this

combination is typically quite inefficient, the ensemble threshold is likely to be

only slightly lower than for any one band alone (see analogous arguments in

IV-C with respect to combination of errors across space). For uniform

quantization and a given quantization factor Q , the largest possible coefficient

error is Q/2 . The amplitude of the resulting noise is approximately A λ ,θ Q/2.  (The

approximation is because the amplitudes of individual noise signals depend

upon the particular noise sample, but as noted above they are typically very

close to the basis function amplitudes.) Thus we set

Q Y Aλ θ λ θ λ θ, , ,= 2  . (8)

The basis function amplitudes A λ ,θ  are given for six levels in Table 5. Image

compression applications do not typically require more than this many levels,

but additional amplitudes may be approximated by noting that the ratio of

magnitudes of adjacent levels converges to 2.

Leve l
Or ien ta t ion 1 2 3 4 5 6

1 0.62171 0.34537 0.18004 0.091401 0.045943 0.023013
2 0.67234 0.41317 0.22727 0.11792 0.059758 0.030018
3 0.72709 0.49428 0.28688 0.15214 0.077727 0.039156
4 0.67234 0.41317 0.22727 0.11792 0.059758 0.030018

Table 5. Basis function amplitudes A λ ,θ for a six-level linear-phase 9/7 DWT.

Combining (7), (8), and (2),

Q
A

a
k

f g

r

λ θ
λ θ

λ
θ

,
,

log

=





2
10

2 0

2

(9)

Table 6 shows example matrices computed from this formula.
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Table 6. Quantization factors for four-level 9/7 DWT for r=32 pixel/degree.

Figure 18 shows an example image uncompressed and compressed using the

quantization matrix of Table 6, and twice that matrix. Viewed from the

appropriate distance (23 inches, approximately arm's length) the quantization

artifacts should be invisible for the left image, and visible for the right

(examine the boundaries between each parrot and background). Using typical

entropy coding techniques, the resulting bitrates for these two examples are

1.05 and 0.67 bits/pixel.

Level
Color Or ien ta t ion 1 2 3 4

Y 1 14.05 11.11 11.36 14.5
2 23.03 14.68 12.71 14.16
3 58.76 28.41 19.54 17.86
4 23.03 14.69 12.71 14.16

Cb 1 55.25 46.56 48.45 59.99
2 86.79 60.48 54.57 60.48
3 215.84 117.45 86.74 81.23
4 86.79 60.48 54.57 60.48

Cr 1 25.04 19.28 19.67 25.6
2 60.02 34.34 27.28 28.5
3 184.64 77.57 47.44 39.47
4 60.02 34.34 27.28 28.5
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Figure 18. Original image (top) and compressed with perceptually lossless DWT

quantization matrix (left) and twice that matrix (right). Image dimensions

are 256x256 pixels. Quantization matrix is designed for a viewing distance

of 23 inches.

The quantization matrix is inevitably a function of the display visual

resolution, as is evident from (9). Fig. 19 shows Y quantization factors for

display visual resolutions of 16, 32, and 64 pixels/degree. These figures show
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that for low visual resolution (16 pixels/degree), the quantization factors are

small and almost invariant with level and orientation. At the middle

resolution, typical of office viewing of desktop computer images, the function is

still a rather flat function of level for all orientations except 3, which shows a

large elevation at the lowest level. At the highest visual resolution, oblique,

horizontal, and vertical factors are strong functions of level, while the low-pass

signal is still nearly invariant with level.

Level

Q

1 2 3 4
0

20

40

60

80

100
16 pix/deg

1 2 3 4
0

20

40

60

80

100
32 pix/deg

1 2 3 4
0

20

40

60

80

100
64 pix/deg

Figure 19. Quantization matrices for three display visual resolutions plotted as

functions of level, with orientation indicated by symbol markings.

VI . DISCUSSION AND EXTENSIONS

A . Down-Sampled Chromatic Channels

Because human sensitivity to chromatic variation is lower than that to

luminance variation at higher spatial frequencies, it is common in DCT and

DWT transform coding to down-sample the chromatic channels. This is easily

accommodated in the current scheme, provided that the value of r  is altered

appropriately for the calculation of quantization matrices via (9). For example,

if the true display visual resolution is 32 pixels/degree, and chroma is down-

sampled by two in each dimension, then the corrected value of r  is 16

pixels/degree.
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B. Light Adaptation

The model developed above is fit to data collected at one mean luminance.

The Y, Cb, and Cr thresholds that we have measured and computed are

expressed in grayscale units, analogous to luminance and chromatic contrasts.

Contrast thresholds for both luminance and color wavelets are likely to vary

little with increasing mean luminance [33]. Thus matrices computed by the

formulae presented here should be valid over a wide range of display

luminances, since variation in overall display luminance will alter in

proportion both the signal luminance and the mean luminance, thus

preserving signal contrast. However, for a fixed display luminance, spatial

variations in the local mean luminance of the image will produce local

variations in visual thresholds [10]. At photopic levels, thresholds will be

roughly proportional to the local mean. These variations can be

accommodated by more complex quantization matrix designs [34], and may

also drive spatially adaptive quantization schemes [35].

C. Masking and Adaptive Quantization

The thresholds measured above were for signals presented against an

otherwise uniform background. It is well known that thresholds rise when

targets are presented against complex backgrounds, as a result of visual

masking. It is for this reason that wavelet quantization schemes often set

quantization factors according to the variance of the coefficients.

A thorough treatment of masking in the context of DWT artifacts is beyond

the scope of this paper, but we describe here a simple way in which the

threshold model may be used to augment adaptive quantization schemes. One

possibility is to compute a measure of variance within a band that is scaled by

the visibility of signal within that band,

˜
, , ,σ σλ θ λ θ λ θ

2 2 2= −D (10)
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where D λ,θ is the visual threshold for a particular level and orientation,

expressed in units of the DWT coefficient. This visually effective band variance

might then be used to adjust the band quantization factors, for example,

˜ ˜
, , , , ,Q D Dλ θ λ θ λ θ λ θ λ θσ σ= + = +2 1 22 2 2

(11)

Recent models of visual masking suggest that the visually effective variance

should be computed over a broad range (perhaps all) orientations, but over

only a limited range of space and spatial frequency [36-38]. The expressions

above are easily altered to accommodate this idea, but herein we have not

contemplated quantization factors that differ over space. While this might be

valuable, it presents additional problems in conveying the side information

necessary to define the various matrices, and to associate the various matrices

with regions of the image.

Another possible use of the coefficient thresholds is in the context of a

highly adaptive scheme such as that designed for the Discrete Cosine

Transform by Watson [18, 34, 39]. In that method, the visibility of the total

ensemble of actual quantization errors is computed, based on a mathematical

model of DCT uniform quantization noise thresholds, and the quantization

matrix is optimized to produce minimum perceptual error for a given bit-rate.

D. Other Wavelets

It is desirable to extend our model to thresholds for other wavelets. This

requires either empirical thresholds for the wavelet in question, or a more

general model of human visual sensitivity. We and others are making efforts in

the latter direction [40, 41].

VI I . CONCLUSIONS

We have measured visual thresholds for samples of uniform quantization

noise of a DWT based on the linear-phase 9/7 wavelet. Thresholds were

collected for gamma-corrected signals in the three channels of the YCbCr color

space. We have constructed a mathematical model for the thresholds, which
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may be used to design a simple "perceptually lossless" quantization matrix, or

which may be used to weight quantization errors or masking backgrounds in

more elaborate adaptive quantization schemes. These perceptual data, models,

and methods may enhance the performance of wavelet compression schemes.
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